X Marks the Spot: Unlocking the

Treasure of Spatial-X Models

Cameron Wimpy, Arkansas State University
Guy D. Whitten, Texas A&M University
Laron K. Williams, University of Missouri

In recent years, political scientists have made extensive use of spatial econometric models to test a wide range of theories.

In a review of spatial papers, we find that a majority of these studies use the spatial autoregressive (SAR) model. Although

this is a powerful method that reveals inferences about diffusion processes, it is also highly restrictive and makes assumptions

that often are not appropriate given the expressed theories. We contend that spatial-X (SLX) models are a better reflection of

typical theories about spatial processes. Our simulations demonstrate that SLX models consistently retrieve the direct and

indirect effects of covariates when the true data-generating process reflects other spatial processes. SAR models, however, tend

to find phantom higher-order effects that are not present in the data. We further demonstrate how SLX models reveal

heterogeneity in patterns of spatial dependence in countries’ defense burdens that SAR models cannot discover.

olitical scientists have increasingly made use of spatial

econometric models. The appeal of these models is that

they relax rigid assumptions about the independence of
observations across space. While the move toward these tech-
niques is encouraging for the building of more realistic models
of politics, there is frequently a substantial disjuncture between
theoretical propositions, what is actually being tested, and how
results are interpreted. This has particularly been the case when
researchers rely only on the spatial autoregressive (SAR) model
to test their theories.

The SAR model captures contemporaneous interdepen-
dence in outcomes—how the value of the dependent variable
in one unit, y, affects the value of the dependent variable in
another unit, y;. Although the SAR model is the most popular
spatial model among political scientists, it is a highly restrictive
model that researchers should use with caution. We argue that,
depending on the theory being tested and the pattern of spatial
effects, the spatial-X (SLX) model may be preferable to the
SAR. This is the case because the SLX model allows the spatial
processes to influence the outcome through one or more inde-
pendent variables. Examples of this include trash in a neighbor’s
yard affecting the value of your home and lax gun regulations

in nearby states producing negative externalities (Knight 2013).
Since there is no implicit endogeneity, both the estimation
and the interpretation of SLX models are considerably easier
than with SAR models.

Ideally, selecting the appropriate spatial econometric model
should be driven by one’s theory about the presence of spatial
dependence in the outcomes, observables, or unobservables
(Cook, Hays, and Franzese 2015). After selecting a theoreti-
cally grounded model, appropriate specification tests (such as
a Lagrange multiplier test) should further buttress those choices
(Darmofal 2015). In the absence of an appropriately specific
theory, one at-first obvious approach would be to borrow a
strategy from time series analyses (Hendry 1995): start with a
general model that includes all three types of spatial depen-
dence and then gradually pare down the model by testing
restrictions (Vega and Elhorst 2015). A full interpretation of
the various total, indirect, and direct effects and specification
tests would then complete the process (LeSage and Pace 2009;
Whitten, Williams, and Wimpy 2021). In practice, however,
the estimation and interpretation of a general model that in-
cludes spatial relationships from all three sources is very dif-
ficult, and thus it is rarely done.

Cameron Wimpy (cwimpy@astate.edu) is an assistant professor, Department of Political Science, Arkansas State University. Guy D. Whitten (g-whitten@pols.tamu.edu)

is a professor, Department of Political Science, Texas A&M University. Laron K. Williams (williamslaro@missouri.edu) is an associate professor, Department of Political

Science, University of Missouri.

Data and supporting materials necessary to reproduce the numerical results in the article are available in the JOP Dataverse (https://dataverse.harvard.edu
/dataverse/jop). An online appendix with supplementary material is available at https://doi.org/10.1086/710089.

The Journal of Politics, volume 83, number 2. Published online April 21, 2021. https://doi.org/10.1086/710089
© 2021 by the Southern Political Science Association. All rights reserved. 0022-3816/2021/8302-0021$10.00


mailto:cwimpy@astate.edu
mailto:g-whitten@pols.tamu.edu
mailto:williamslaro@missouri.edu
https://dataverse.harvard.edu/dataverse/jop
https://dataverse.harvard.edu/dataverse/jop
https://doi.org/10.1086/710089

So what do political science researchers do? In our review of
the literature, we found that the overwhelming majority of
spatial publications in the discipline start and end with the
SAR model. This is the case despite the fact that the underlying
theories, as expressed by the authors, often do not match the
assumptions that the SAR model implicitly imposes. We also
find that researchers rarely interpret the variety of quantities
of interest available in the SAR models that they estimate.

In this article we make a case for an approach to spatial
model building that takes advantage of the flexibility and rel-
ative simplicity of the SLX model. In this approach, the the-
oretical implications of different model specifications are quite
transparent, and the assumptions imposed by the SAR model
can easily be turned into testable propositions. This approach
simplifies the preliminary stages of model specification and
minimizes inferential errors while maximizing the ease of in-
terpretation. We offer these recommendations knowing full
well that they are no substitute for careful theorizing and mod-
eling of the data-generating process (DGP). At the same time,
we think that this approach offers a better alternative to the
current one that dominates the use of spatial econometrics
in political science. By doing so, we hope to illuminate a path
forward and provide a practical midway point between current
unsatisfactory practice and the ideal modeling approaches
advocated by Cook et al. (2015) and Vega and Elhorst (2015).

In the sections that follow, we begin with a brief overview
of SAR and SLX models and point out how they differ in
expectations about endogeneity, feedback, and higher-order
effects. We demonstrate that SLX is more flexible in terms of
producing an empirical test that closely matches underlying
theory. We then identify a troubling pattern from our survey
of the use of spatial econometric models: theories predicting
spillovers among only first-order neighbors are often tested
by SAR models that impose higher-order (and feedback)
effects. In a series of Monte Carlo experiments, we explore
which type of model is more robust to errors in expectations
about the DGP; more specifically, what happens when the
true model is an SLX, but we estimate an SAR and vice versa.
These experiments show that SAR models perform poorly in
terms of identifying the correct direction of spatial depen-
dence, and this problem worsens as the degree of spatial het-
erogeneity increases. SLX models, however, do an adequate job
of characterizing spatial effects of processes typically encoun-
tered in political science. We then provide an illustration of
countries’ defense burdens that shows how SLX models can
reveal interesting patterns of spatial heterogeneity—in terms
of both how the countries are connected and to what extent—
that SAR models cannot. Most notably, we show that insta-
bility (in the form of interstate war) spills over into neighbors’
defense burdens and that these effects are above and beyond
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what one might attribute to positive spatial dependence from
an SAR model. We conclude with a discussion of the impli-
cations of our findings for future research along with some
potential paths forward for model selection.

MODELING SPATIAL DEPENDENCE IN POLITICS

It has been a little more than a decade since political scientists
wrote the first papers about the potential for spatial econo-
metric models of political phenomena (Beck, Gleditsch, and
Beardsley 2006; Franzese and Hays 2007; Ward and Gleditsch
2008). In the wake of these pathbreaking works, there has been
a rapid increase in the employment of spatial econometric
models by political scientists. Scholars have made theoretical
arguments about how spatial relationships help to determine
policies (Gray 1973; Neumayer, Plimper, and Epifanio 2014;
Simmons and Elkins 2004), conflict (Buhaug and Gleditsch
2008; Garcia and Wimpy 2016), party competition (Wil-
liams and Whitten 2015; see also Bohmelt et al. 2016), ter-
rorism (Midlarsky, Crenshaw, and Yoshida 1980; Neumayer
and Plimper 2010a), and many other outcomes.

This section provides an overview of two of the most pop-
ular spatial econometric models: SAR and SLX. Spatial de-
pendence occurs in both models, whether it is in the outcomes
(SAR) or in the observables (SLX). The researcher specifies the
manner in which all the observations are connected to one
another viaan N x N weights matrix (W) in both models, so it
is worthwhile spending some time on this critical task. For ease
of presentation, we explore the basic mechanics of each model
in the context of a simple contiguity or first-order weights ma-
trix.' In figure 1 we show a toy example of how these types of
matrices are constructed. On the far left side of this figure, we
show a map of six units with arrows depicting first-order neigh-
bors. For now, only consider the first-order contiguity weights
matrix (W), where each cell identifying a pair of neighboring
units contains a one and all other cells contain zeros. Since
being a neighbor is symmetrical, this matrix is symmetrical.
And since a unit cannot be a neighbor of itself, the main di-
agonal contains all zeros. As we will see below, these features of
W have meaningful consequences for substantive inferences.

The spatial autoregressive model
The equation for a basic SAR model is

Y=X5+,0WY+& (1)

1. In addition to making the presentation more clear, this is the most
popular type of weights matrix used in political science research. In our
survey of the literature (described below), we found that 72.3% of the
models reported used a weights matrix specified on the basis of geography.
Regardless, the same types of patterns and problems discussed in this
article persist in SAR models regardless of the specification of W.
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Figure 1. Spatial arrangement with associated squared (W?) and second-order (W,,4) weights matrices

and the reduced equation (isolating y on the left side) is
y = (L —oW) XB+ (I, — pW) e (2)
From the infinite series expansion of the spatial multiplier,
(I, —pW) "' = (I, + oW + p*W2 + p°W* + ..)),  (3)

we can see that higher-order and feedback effects, or global
effects, are present in any and all SAR models. Consider the
second weights matrix depicted in figure 1 (W?), which has
two meaningful features. First, unlike W, the main diagonal ele-
ments—which convey the relationship of a unit with itself—do
not equal zero. These values reflect feedback effects for which
the effect of a unit on its neighbors comes back to affect the unit
itself.

Second, we can see that W? contains nonzero values for all
cells containing second-order neighbors.> The result is that
the effects extend beyond first- and second-order neighbors
(because of W raised to increasingly higher values in eq. [3]),
and they occur simultaneously at time t. We can thus label them
as “global effects.”

While interpreting the coefficients is a reasonable place to
start, it is a bad place to stop in the interpretation of an SAR
model. Given all of the different higher-order and feedback
terms implicit in W? and the higher-order terms in equa-
tion (3), a general interpretation of the estimated p masks
substantial variation in the estimated effects across units. For
instance, if we want to infer the effect of a single x on y, then
one approach is to examine the partial derivatives matrix
(LeSage and Pace 2009; Whitten et al. 2021):

laEw JE(y)

ox,  Oxy

] = (I—pW) '8, (4)

where the resulting N x N matrix (N is the total number of
observations) contains both the impacts of x; on y, or direct

2. The value in these cells reflects the number of paths through which
each pair of units are second-order neighbors. So, e.g., cell,; = celly,, =1
because A and E are only connected through B, but cell;c = cellgy = 2
because B and C are connected through both A and D.

effects (along the diagonal), and the impacts of x; on y;, or
indirect effects (along the off-diagonal).

The spatial-X model

In contrast to the SAR model, the SLX model offers a
framework in which researchers may choose whether to
model local or global spatial relationships. In addition, the
SLX model is relatively easier to estimate and interpret. In
practice, the SLX model has been most often discussed as a
modeling strategy for exogenous spatial effects from a di-
rect neighbor. This effort has primarily been driven by the
work of LeSage and Pace (2009) in which they suggest that
the SLX model works best in the case of “externalities,” or
“local spillovers.” Spillovers would appear to accurately char-
acterize many political science phenomena; something hap-
pens to a neighbor that affects the outcome of interest.

The equation for a basic SLX model can we written as

y = XB+WZ0 + ¢ (5)

where Z is the matrix of variables expected to exert spatial
influence on y through a theoretically specified W matrix
that connects observations to each other through a vector of
spatial parameters 6.

If we start with a simple SLX model with a single in-
dependent variable, x,, such that X = Z = x,, we calculate
the effect of x, on y as

dE(y)
ox,

]=&+aw. (6)

In contrast to the infinite series expansion in the SAR spatial
multiplier, the indirect effect (§, W)—or “neighbor effect”—
is only present at the first order. In other words, with the
specification presented in equation (5), the effect of x, is
limited to only local effects; the effect does not continue to
second-order neighbors, and there are no feedback effects.

3. We use Z to reflect the possibility that Z and X can have different
contents.



However, as we discuss below, if we want to specify higher-
order and feedback effects, we can incorporate them into an
SLX model.

Without realizing it, scholars often use SLX models by
including spatially weighted independent variables. In fact,
any model that controls for the sum or average of neighbors’
attributes reflects an SLX specification (Drolc, Gandrud, and
Williams 2019). The most common example incorporates a
temporally lagged spatial lag (TLSL), which tests a common
argument in theories of policy diffusion that the diffusion
process—or the influence of neighbors’ covariates more gen-
erally—occurs with a temporal lag. This variant of the SLX equa-
tion can be written as

y = X6+ Wy, 0+e. (7)

While the estimation is straightforward, the presence of the
TLSL adds a temporal dimension to the quantities of interest.*
In the next section, we provide some guidelines as to when
to use one model over the other, by highlighting each model’s
flexibility and ability to derive correct causal inferences.

THEORY, SPECIFICATION, AND ESTIMATION

IN SAR AND SLX MODELS

The general motivating force behind spatial econometric models
is to test theories about how y; is a function of some aspect of
unit j. If a researcher’s expectations are that the spatial rela-
tionships are between y; and y; and that these relationships are
global (including feedback from y; to y; and back to y,) and
occur immediately, then the SAR model is clearly the appro-
priate model to choose. Yet, if a researcher’s expectations are
that the spatial relationships in a study are between y, and some
variable z;, and these relationships are local in nature, then the
SLX model is clearly the appropriate model to choose. But what
about a researcher whose expectations are less sharp? Under
these circumstances, we echo the suggestion by Vega and Elhorst
(2015) that the SLX model is a better place to start than the SAR.
The advantages of the SLX model are fourfold: greater flexi-
bility in specifying lower-order (local) versus higher-order (global)
effects, the ability to relax and test common factor restrictions,

4. A common misconception is that this is “an alternative specifica-
tion of the spatial autoregressive model” (Beck et al. 2006, 40). However,
the TLSL forces the causality to go in a single direction (i.e., from y,
to y,), which eliminates the defining feature of SAR models: spatial en-
dogeneity. Neumayer and Pliimper (2010b, 158) note that a model with a
temporal lag “is not strictly speaking a spatial lag model.” Feedback for i
from x,_, can occur by first influencing ’s neighbors at time f, which then
influences j’s neighbors (including i) at time ¢ + 1. In the first section of
our appendix (available online), we provide some more discussion of the
features of the TLSL model and why it is more like an SLX model than an
SAR model.
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the ease of estimation and interpretation, and more flexible and
realistic specifications of temporal processes. We will explore
each of these in turn.

First, the SLX model offers a more flexible approach to
modeling lower-order versus higher-order spatial effects than
the SAR model. As we outlined above, the SAR model implicitly
imposes a number of strong assumptions that may not be
immediately obvious to scholars and that often run contrary
to their theoretical expectations about the spatial processes at
work. In most incarnations of the SAR model, there is no way
to limit spatial effects to only local first-order effects.” Although
the SAR model certainly captures local effects, by construction
it also finds higher-order effects. The infinite series expansion
(eq. [3]) reveals that all observations are eventually affected by
any change in x; this is the case even if there is no theoretical
reason to expect that nth-order neighbors would be influenced
(albeit in a small fashion) by a change.® The SAR model offers
no flexibility in terms of how many orders of neighbors are
affected. Feedback effects start in the second order (e.g., W? in
fig. 1). Although one may theorize that the total effect of a
change in x; for observation i arises only from first-order local
effects, the SAR model forces there to be higher-order and
feedback effects, whether this accurately reflects the true spatial
process or not. The consequence is that SAR models will risk
finding a global process even if one is not present.

In an SLX model, expectations about local first-order pro-
cesses can be easily tested through the specification of a model
like that in equation (5). But can SLX perform adequately when
the true spatial process includes higher-order effects? The
answer is yes. By altering the model specification, scholars can
incorporate higher-order effects into their models of spatial
processes. For example, imagine that we have an expectation
of higher-order effects that stop at the third order. For ease of
exposition, we limit our model to a single independent var-
iable x. In this case, we would estimate an SLX model spec-
ified as follows:”

y = Bx + 6,Wx + ,W’x + ,W’x + ¢. (8)
The total estimated effect of x on y would be

{BE()’) 9E(y)

ox,  Oxy

} =B+60,W+0,W +0,W, (9

5. In the case of SAR models using directed dyadic data, one can limit
the effects to the first order by distinguishing between the sources and
targets of stimulus (e.g., Neumayer and Pliimper 2010b, 152-54).

6. The one exception to this would be for a unit that has no connectivity
with any other. In fig. 1 such a unit would appear as an island with values
equal to zero for the relevant column and row in W.

7. In this specification, X = x, a single vector containing the values
for independent variable x, and Z = (x x x).
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where B is the estimated direct (or zero-order) effect of x, 0, is
the estimated first-order indirect effect, 92 is the estimated
second-order indirect effect, and 93 is the estimated third-
order indirect effect. It is worth noting that restrictions on the
order of effects can be tested, so one strategy is to start with an
n-order specification and then use hypothesis tests to pare
down the model.?

With the model specification shown in equation (8), the
SLX model mimics the SAR model in its estimation of feed-
back effects. However, there might be situations in which one
expects higher-order neighbor effects but does not expect that
the spatial process will have feedback effects. In these cases, one
can exchange the terms with W squared, cubed, and raised to
higher powers for n-order contiguity matrices such as W, in
figure 1 (as we demonstrate in the appendix). One can also test
whether the spatial process exhibits feedback loops, by com-
paring the model fit (through, e.g., the Akaike information
criterion and Bayesian information criterion) of an SLX spec-
ification with traditional squared and higher-order W terms
versus that from one with nth-order contiguity matrices.

The second relative advantage of the SLX model is the ability
to relax and test common factor restrictions. In the case of an
SAR model, there is an imposed assumption that all global
spatial dependence works through a single spatial parameter, p.
For example, consider estimating an SAR model where we have
two independent variables, x, and x,, in X. Since there is only
one estimated p in the model, the infinite series expansion of
the spatial multiplier (found in eq. [3]) is identical, and the only
difference in the estimated spatial effects comes from different
coefficient estimates in 3. In other words, the strength of spatial
dependence, and the manner in which higher-order effects re-
verberate throughout the system, is identical for both x, and x,
by construction. Moreover, one spatial autocorrelation coeffi-
cient (p) is used to represent the declining spatial effects across
all orders of neighbors, albeit at an order of magnitude smaller
at each additional order of neighbors (p, p* p°, etc.). Rather than
this common factor restriction being imposed by the model
(in the case of SAR), in the context of an SLX model it becomes
a testable proposition; we can test the accuracy of these re-
strictions and modify the specification accordingly.’

It is not outside the realm of possibility to consider political
science applications in which spatial relationships may vary
across independent variables. In such cases of spatial hetero-

8. One word of caution is that if there are few neighboring obser-
vations in the weights matrix, then higher-order representations of W can
exacerbate problems of multicollinearity and inflate standard errors.

9. For example, in Moore and Shellman’s (2007) analysis on refugees’
destination, they estimate different parameters for the spatial contiguity
effects of a number of independent variables.

geneity, the SLX model offers a far more straightforward and
accurate approach by allowing scholars to estimate different
spatial parameters for the independent variables. Unlike the
SAR model, the SLX model also provides the flexibility of
spatially lagging only those variables from a neighboring unit
that are theorized to affect y; via some form of spatial de-
pendence. In other words, X and Z do not have to be the same.
Some covariates might only have direct effects (i.e., only be in
X), and others might only have indirect effects (i.e., only be in
Z). Furthermore, the Wi can vary across the different z variables
(if different interconnectivities are theorized to exist), and this
model allows for spatial heterogeneity (e.g., when 6, # 6,). As
opposed to the complicated multiple SAR model, estimation
for an SLX model with different interconnectivities is rather
straightforward.

The third advantage of SLX models to applied researchers
is ease of estimation and interpretation. Perhaps the most no-
table argument for the SLX model comes from the Gibbons and
Overman (2012) critique of the general enterprise of spatial
econometrics. These authors argue that analysts using the SAR
model end up with models that are weakly identified because of
the hurdles involved in estimation of these endogenous models.
The authors further point out that the model being estimated
rarely fits the expressed theory. As such, they make an argu-
ment for the far simpler, exogenous SLX model.

SLX models provide much more meaningful coefficients in
terms of allowing scholars to quickly and correctly make in-
ferences about the spatial processes at work. While the SAR
model produces a global coefficient of average spatial depen-
dence (p), getting substantive impacts and estimates of uncer-
tainty from other coefficients of interest is notably difficult.
Moreover, the p does not easily distinguish between local and
higher-order connectivity, thus making it difficult to make sub-
stantive inferences about the degree of spatial dependence from
one neighbor to another. Given the complexity of calculating
quantities of interest from SAR models, it is perhaps under-
standable that few scholars move beyond simple interpretations
of the sign and significance of p.

In contrast, the SLX model is easier to interpret. The biggest
difference in interpretation is that in an SLX model, the re-
spective (3 can be interpreted as is; B is the estimated change in
y, for a one-unit increase in x.. Yet, in an SAR model, the 3
represents the estimated “direct effect” of x; on y,, which, be-
cause of spatial dependence in the outcomes, we never actually
observe because they are merely the prespatial effects that have
yet to be filtered through the spatial dependence. This is
complicated by the fact that the effect of x; on y; also depends
on the strength of feedback. The spatial coefficients from an
SLX model, the § terms, are interpreted as the estimated im-
pact of a one-unit increase in the relevant z variable on the



outcome variable in a neighboring unit."” In comparison, this
effect is difficult, if not impossible, to ascertain from merely
examining the p value from an SAR model.

The fourth advantage of SLX models is that they offer more
flexible and realistic specifications of temporal processes. Up
until now, we have ignored possible temporal variations in
our data other than to note that by construction SAR models
impose that all effects of y; on y; and feedback effects from y,
back on itself happen immediately. If our theory is that the
effect of y; on y, and any associated feedback effects take time to
happen, we can test this through an SLX model by including
Y,_, as a term in our specification of Z (see eq. [7]).

In the next section, we explore patterns in how political
scientists have selected and interpreted spatial econometric
models.

SPATIAL DEPENDENCE IN PRACTICE

To provide a systematic overview of how researchers in
political science have used spatial econometric models, we
reviewed every work published through the end of 2015 that
cited Beck et al. (2006), Franzese and Hays (2007), or both—
two highly influential early papers promoting the use of
spatial models."" We coded the use of these techniques in the
main empirical model that was reported.

Table 1 shows a taxonomy of the use of spatial econometric
models by political scientists in terms of the type of spatial
theory expressed and the model estimated. There are three
patterns worth noting in this table. First, although SAR models
recover global effects—or those in which all nonisolate ob-
servations are influenced by changes in one observation—only
8.9% (5 of 94 studies) expressed theories that are global in
nature. In those rare cases when scholars explicitly state global
theories, however, they tend to appropriately test those theo-
ries with a model based on dependence in the outcomes (i.e.,
SAR or a more complex model that includes an SAR process).
Second, when political science researchers have expressed a
theory that is either local or not specific in terms of the types
of spatial expectations, almost half the time (46.1%) they have
estimated an SAR model that imposes global spatial effects.

Third, only 10.6% (10 out of 94 studies) of the publications
we reviewed feature more than one pattern of spatial depen-
dence. There is also generally little discussion of the process—
if any—used by scholars to pare down more complex models

10. We are limiting the current discussion to cases in which W is a
standard contiguity matrix with no row-standardization. With a more
complicated W where the weights matrix contains values other than 0 and
1, the estimated effect of a one-unit increase in x; on y; is 6 x Wy

11. This initial search yielded 155 publications. We narrowed this down to
94 studies that reported results from at least one spatial econometric model.
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Table 1. Applications of Spatial Econometrics
in Political Science

Spatial Theory Type

Global Local
Model Used Total (%) Total (%)
SAR 4 80.0 41 46.1
SLX 0 .0 34 38.2
Complex 1 20.0 9 10.1
Other 0 .0 5 5.6

Note. Summary of the 94 studies citing Beck, Gleditsch, and Beardsley
(2006), Franzese and Hays (2007), or both that reported results from at
least one spatial econometric model.

to simpler models. Altogether, this is indicative of scholars
beginning with a specific model in mind (usually the SAR),
rather than a general-to-specfic approach. We return to this
point in our discussion of paths forward below.

Among those papers in our survey that estimated an SAR
model, the overwhelming majority offered a theory of indirect
effects—the effect of x; on y—that were local in nature rather
than global. In fact, only 8.9% (4 out of 45 studies) of those that
estimated an SAR model explicitly expressed a global theory.
Essentially this means that scholars theorize that explanatory
variables may have an effect on first-order neighbors (local)
but are silent about potential impacts on higher-order neighbors
(global; Elhorst 2014). This latter finding is striking because the
SAR model imposes global relationships across all spatial units.
In contrast, spatial relationships in SLX models can be specified
as either local or global.

Another common pattern emerges in our in-depth explo-
ration: scholars often estimate a series of SAR models, each with
a different specification of the weights matrix (e.g., Flores 2011;
Gassebner, Gaston, and Lamla 2011; Goldsmith 2007; Obinger
and Schmitt 2011)."> Recall that the SAR model imposes a
common factor restriction that all of the spatial dependence
operates through one parameter, p, connected through a prop-
erly specified W. An SLX model, however, easily allows different
variables to influence the outcome through multiple spatial de-
pendence paths; the final model can then be pared down using
traditional model selection criteria. The examples referenced
above highlight at least three problems that arise from estimating

12. These examples do not represent a comprehensive list. Instead, we
identify them as representative examples of instances in which the inferences
might be different with an SLX model, either because of methodological dif-
ferences or because the SLX model represents a more appropriate way of
testing the theoretical expectations.
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separate SAR models: first, it severely limits whether authors
can determine which model best approximates the DGP. Sec-
ond, if multiple weighting schemes are operating simulta-
neously and are correlated, then any model including only
one will be biased. Third, even if only one weights matrix
correctly specifies the spatial process, if explanatory variables
operate through the weights matrix in different ways, then
the SAR model will not be able to disentangle that spatial
heterogeneity."”

In the next section we present the results from two sets of
Monte Carlo experiments in which we explore how SLX and
SAR models perform under different DGPs.

EXPERIMENTS

In this section we provide two sets of Monte Carlo experiments
to explore the robustness of both models to errors in expectations
about the DGP. In the first set of experiments, we expect that
SLX models will perform admirably in deriving inferences about
the effects of explanatory variables, even though the true process
is generated by an SAR. One of the advantages of SLX models
that we described above is that they can mimic the higher-order
effects of SAR models in situations that scholars are likely to
encounter in practice. The opposite, however, is unlikely to be
true. In the second set of experiments we expect that SAR models
are too inflexible to effectively deal with spatial heterogeneity
that often accompanies an SLX DGP.

SAR data-generating process

In the first set of experiments, we generate data using the
reduced-form equation for the SAR model found in equa-
tion (2), with matrix X containing a single variable drawn
from a uniform distribution, x € [—10, 10], and where 8 = 1.
Matrix W is an N x N symmetric row-standardized conti-
guity weights matrix, where each element below the diagonal is
randomly drawn from a Bernoulli distribution. We simulated
1,000 data sets at each of nine different scenarios defined by
the strength of the spatial autocorrelation, p € {—0.8,0.8}."
In each panel of table 2, we display our findings from estima-
tions using a different SLX specification.'

13. This is not to say that there are no good examples of scholars
carefully selecting the appropriate empirical model and then painstakingly
exploring the substantive meaning of those models. Freeman and Quinn
(2012, 67), e.g., reveal how income inequality and financial integration
influence democracy through multiple channels of spatial dependence.

14. Tt is worth noting, however, that values of p with an absolute value
close to 1 are exceedingly rare in political science research.

15. In app. table 1, we present the same results for an SAR estimation.
Not surprisingly, the SAR model does an excellent job of recovering the
true DGP.

The first SLX model that we estimate includes one spatially
lagged independent variable (Wx) and is thus specified as

y = x8 + Wxf + e (10)

The (s are not directly comparable across SAR and SLX spec-
ifications; instead, with the use of the partial derivatives ma-
trix one can easily compare the average direct, indirect, and total
effects across models (LeSage and Pace 2009). Additionally, since
these effects can be partitioned into n-order effects, we assess
the performance of the model at different orders. Table 2
shows how often the estimated SLX model specification’s 95%
confidence intervals include the true effects given the DGP
characterized in equation (2). Each panel of the table provides
the recovery rates for a different SLX model specification
(more on the others below), and each column represents a
different strength of spatial lag coefficient (p in eq. [2]).

There are two clear patterns in panel A of table 2. First,
the simple SLX model recovers the true average direct effect
at an acceptably high rate (nearly 95%) for all values of p
except 0.8."° The recovery rates for the zero-order direct
effect (characterized by the (s.x), however, dip below 95%
at p values lower than —0.4 and higher than 0.4. This
means that B x is capturing the true average direct effect at
common values of p, but it is not an accurate reflection of
the zero-order direct effect (Bsar). The second clear pattern
is that the inclusion of one Wx term is enough to recover
the true first-order indirect effects nearly 95% of the time
for all p €[—0.6,0.6], but overall this model specification
does a poor job of capturing the true total indirect effects.
These two patterns are a consequence of an overly sim-
plistic SLX model specification given the true DGP. The
lack of higher-order W matrices means that there cannot be
second-, third-, or higher-order indirect effects and that
there can be no feedback effects. This is why the simple SLX
in panel A of table 2 has a recovery rate for all higher-order
direct and indirect effects that is 0% at all values of p (repre-
sented by ellipses).

These results from the experiments displayed in panel A
of table 2 should certainly warrant caution from scholars.
To what extent can we eliminate some of these concerns by
modifying the SLX model specification? In the second set of
experiments, we add a first-order weights matrix squared
(W?) and estimate a second SLX coefficient (6,) with a model
specified as

y = xB + Wx0, + Wx6, + ¢. (11)

16. It is worth noting that negative values are quite rare and that we
have never seen such a high value for p in a political science application.
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Table 2. Recovery Rates for Various SLX Model Specifications: SAR Data-Generating Process

-8 —.6 -4 -2 0 2 4 .6 8
A. Simple SLX model: y = x8 + Wx0 + ¢

Direct:
Total 94.9 94.4 94.8 93.7 95.5 93.5 95.0 94.0 88.9
0 order 77.9 91.9 95.1 93.5 95.5 93.4 94.8 90.7 81.0
Second order
Third order

Indirect:
Total 15.1 49.9 85.2 93.7 95.2 93.5 40.3 0 0
First order 914 93.8 95.5 93.1 95.2 94.5 94.4 93.8 93.1
Second order
Third order

B. SLX model with a squared term: y = x8 + Wx0, + Wx0, + ¢

Direct:
Total 95.0 94.0 95.1 93.8 95.4 94.0 95.2 94.4 91.0
0 order 94.2 95.1 95.2 94.2 93.6 94.8 94.8 94.9 95.8
Second order 93.2 93.9 94.7 94.6 94.0 94.7 93.6 93.4 93.8
Third order

Indirect:
Total 93.0 94.7 94.8 94.7 93.9 94.5 93.3 83.7 2.6
First order 93.0 94.9 95.9 94.0 94.9 94.9 94.4 93.2 92.6
Second order 93.2 93.9 94.7 94.6 94.0 94.7 93.6 93.4 93.8

C. SLX model with squared and cubed terms: y = x8 + Wx0, + W’x0, + W’x0; + ¢

Direct:
Total 95.0 94.2 94.6 94.3 96.1 94.4 94.5 93.7 93.4
0 order 94.2 95.1 95.3 94.1 93.9 94.9 94.3 94.9 95.9
Second order 93.9 94.0 94.8 95.2 94.2 95.2 93.8 93.2 93.3
Third order 94.2 93.6 94.7 93.5 95.0 94.4 95.0 93.9 93.4

Indirect:
Total 95.5 95.1 95.6 94.4 95.2 94.5 93.9 92.6 87.0
First order 94.3 94.7 95.1 93.9 94.9 93.7 93.9 95.2 94.4
Second order 93.9 94.0 94.8 95.2 94.2 95.2 93.8 93.2 93.3
Third order 94.2 93.6 94.7 93.5 95.0 94.4 95.0 93.9 93.4

Recall that W matrices raised to higher orders allow for
spatial effects that cycle through neighbors of neighbors and
back to the originator (see the first-order squared matrix in
fig. 1). This second model specification, therefore, should help
address the poor performance of the first model in estimating
the average indirect effects created in the DGP.

From table 2 panel B, we can see that the addition of the
squared weights matrix improves the performance of the model
in all of the weak spots detailed above. First, the zero-order
direct effects are now recovered at 95% for nearly all the values

of p, in addition to the second-order direct effects (feedback
effects), which results in even more accurate estimates of the
average direct effect. Second, the ability to model second-order
indirect effects allows one to gain accurate inferences about not
only those effects (nearly 95% recovery rates at all values) but
also about the average indirect effects overall. Instead of poor
performance at values outside of p € [—0.2,0.2], the average
indirect effects are well recovered at a much broader range of
values (o € [—0.6, 0.4]). Furthermore, in these experiments the
improvement in model performance does not come at a cost of
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multicollinearity; on average the highest variance inflation fac-
tor is a little more than 2.”

As we discussed earlier, the infinite series expansion of the
spatial multiplier in the SAR model (see eq. [3]) means that
the indirect effects increase forever but at a declining rate. To
mimic this sort of process with an SLX model, one would have
to include a large number of higher-order weights matrices.
The utility of this approach, however, would be limited, as the
size of the indirect effects from higher-order effects is quite
small, and this would likely exacerbate any issues of multi-
collinearity. The next step, then, is to see whether including a
cubed weights matrix effectively recovers the direct and indirect
effects by estimating a model specified as

y = x06 + Wx0, + W’x0, + W’x0; + ¢. (12)

The recovery rates presented in panel C of table 2 reveal the
untapped promise of the SLX model even in those processes
ripe with spatial diffusion. In all but the most extreme cases of
positive spatial autocorrelation (i.e., when p > 0.6), the SLX
model with both squared and cubed W terms recovers the
average direct effect, average indirect effect, and by implication,
the average total effect. Thus, in the vast majority of cases that
scholars observe in practice, one could estimate an SLX model
and make the same substantive inferences regarding the impact
of a variable on the observation, its neighbors, and the other
observations. The only drawback is higher multicollinearity (the
average variance inflation factor score is now above 5), which
leads to somewhat inflated standard errors. This is certainly
not a reason to avoid estimating the SLX model and is a similar
decision to those made by scholars choosing whether to in-
clude lower-order terms in interactive models."®

In the next section we explore the opposite scenario in
which we have an SLX DGP but we estimate an SAR model.

SLX data-generating process

Our next set of experiments assesses the performance of SAR
and SLX models when the spatial processes operate through
dependence in the observables and there are no higher-order
spatial effects. In other words, how do the models perform
when the data are generated in a manner consistent with an
SLX model? As before, we choose to compare the performance
of SLX and SAR models on the basis of whether they can re-
cover the true average direct and indirect effects, calculated via
the partial derivatives approach.

17. Of course, scholars must make their own decisions as to whether
the increased multicollinearity in their model is worth being able to derive
more accurate inferences about spatial processes.

18. In the appendix, we also present the performance of an SLX model
with a matrix specified as W,,4 in addition to W.

We expect that SLX models—not surprisingly—will per-
form well.” Our expectations for SAR models, however, are
mixed. We expect the SAR to do poorly in terms of recovering
the true indirect effects because it will find evidence of higher-
order and feedback effects in the data that we know do not exist.
We also expect that situations of spatial heterogeneity—when
the explanatory variables operate through different spatial pro-
cesses—will be particularly problematic for recovering the
correct estimates of direct and indirect effects. We generate
data for our first set of SLX DGP Monte Carlo experiments as

y = x,8, + 5,8, + Wx,0, + Wx,0, + ¢, (13)

where x, and x, are drawn from uniform distributions,
x, € [—10,10] and x, € [-5,5], and 3, and (3, are set to 1.
Matrix W is an N x N symmetric row standardized conti-
guity weights matrix, where each element below the main
diagonal is randomly drawn from a Bernoulli distribution. In
order to assess how these models perform under varying de-
grees of spatial heterogeneity, we conduct 1,000 simulations
of nine scenarios in which we vary the magnitude of the spa-
tial coefficients (#, and 6,).

The first step is to determine whether the SAR can recover
the true total effects of x, on y. Figure 2 shows histograms for
1,000 estimated average total effects (with 95% confidence
intervals via the percentile method depicted with vertical
dashed lines), as we vary the values of 0, and 6,. More spe-
cifically, the histograms are arranged to represent variation
on two critical elements of these models. Moving vertically
depicts varying levels of spatial effects, ranging from weak
(bottom row) to moderate (middle row) to strong (top row).
Moving horizontally depicts varying levels of spatial hetero-
geneity, ranging from none (left column) to moderate (middle
column) and substantial (right column). In each experiment,
the true total effect is the sum of the direct effect (3, = 1) and
the indirect effect (6,) for x,, or 0.8, 1.4, and 0.2 (going from the
bottom row to the top row). If the 95% confidence intervals
(dashed vertical lines) for the calculated total effects from the
SAR include the true total effects from the DGP (solid vertical
lines), then we can conclude that estimating the SAR model
when the true DGP is an SLX will recover the substantive ef-
fects of x;.

Figure 2 shows that both spatial effect size and spatial het-
erogeneity have meaningful influences on the degree of bias for
the SAR under these SLX DGPs. In nearly all of the scenarios,
the true total effect appears far away from the bulk of the esti-
mated total effects from the simulations. As one goes from no
spatial heterogeneity (first column) to moderate and substantial

19. Results from these estimates are shown in app. table 2.
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Figure 2. Recovery of the true total effects of x, in the SAR model across strength of spatial autocorrelation and spatial heterogeneity. The 6 values refer
to those from the SLX Monte Carlo simulations. Vertical lines represent 95% confidence intervals (dashed) and the true total effect of x, (solid).

heterogeneity (third column), the true total effect is less likely
to be located near the center of the 95% confidence interval.
Thus, when there are multiple patterns of spatial dependence
in one model, estimating an SAR model (with one W) is likely
to provide incorrect inferences about x;.

Moving up the rows (from weak to strong spatial effect size),
the consequences for inferences become even more severe;
while the SAR confidence intervals include the true total effect
under weak and moderate (with the true total effect falling near
the edges of the intervals for substantial heterogeneity) spatial
effects, the true total effect is much smaller than those pre-
dicted by the SAR model under strong spatial effects. This
should cause scholars to be cautious about using SAR models
when they expect either strong spatial dependence or that
multiple spatial processes are at work.

While figure 2 provides clear evidence of overestimation
of the total effects, it does not identify whether the source of
overestimation is related to the direct effects or indirect effects.
Our expectation was that it would be caused by the latter, since
the estimation of the direct effect is rather straightforward in

both types of models. Indeed, across all scenarios, the SAR model
is able to recover the true average direct effects in at least 95%
of the simulations.

Another source of bias in the SAR’s calculation of indirect
effects is the common factor restriction that forces all of the
independent variables to influence the dependent variable
via the same spatial multiplier, whether this makes sense or
not. We can imagine circumstances in which there are dif-
ferent causal processes (or at least different functional forms)
operating across the explanatory variables. Figure 3 confirms
our suspicions about the dangers of the common factor re-
striction in circumstances of substantial heterogeneity. The
95% confidence interval only includes the true indirect effect
for x, (in this case, 6,) in five of the nine scenarios. More
troubling is the fact that under substantial spatial heteroge-
neity (last column), scholars would conclude that the indirect
effects of x, are negative (positive), when in fact the true
spatial pattern is positive (negative) spatial dependence. Be-
cause there are both positive and negative spatial patterns
present in the DGP that the SAR model cannot disentangle,
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Figure 3. Recovery of the true indirect effects of x, in the SAR model across strength of spatial autocorrelation and spatial heterogeneity. The 6 values refer
to those from the SLX Monte Carlo simulations. Vertical lines represent 95% confidence intervals (dashed) and the true indirect effect for x, (solid).

there is a risk that scholars will falsely conclude that a spatial
pattern exists that is completely opposite of the true pattern.

We suspect that the inability of the SAR model to accu-
rately predict indirect effects in some cases is due to the
“phantom” higher-order and feedback effects found by the
SAR model. Recall that our experiments are structured so
that there are no higher-order effects; by only including one
0 for each variable, the indirect effects are limited to being
first-order effects (i.e., from first-order neighbors of i). As a
result of the SAR model’s infinite expansion of the spatial
multiplier and the fact that weights matrices are treated as
polynomials rather than higher-order contiguity matrices, the
total effects of x on y will be distributed across orders of neigh-
bors. Thus, the SAR model may find higher-order effects, whether
they are there or not.

Figure 4 shows the average estimated second- (top row)
and third-order (bottom row) indirect effects for x, from the
SAR model. The three columns reflect three scenarios of weak,
moderate, and strong spatial effects (under no spatial hetero-
geneity), and the solid vertical line shows the true higher-order

effects (0). The histograms in figure 4 demonstrate that the SAR
model will often incorrectly discover higher-order (and feed-
back) effects when they are not actually present (with the lone
exception being the third-order effects under weak spatial ef-
fects). Indeed, the size of these phantom effects increases with
the strength of spatial dependence. The issue is twofold. First,
the DGP is strictly exogenous, so there is no reason for unit ’s
neighbors to simultaneously influence unit i. Second, there are
no higher-order effects within the DGP. The SAR model thus
produces inferences about feedback and global effects that are
not warranted by the true DGP. It is clear that there is a sub-
stantial inferential penalty for estimating an model on an SLX
DGP.

APPLICATION

If scholars believe that strategic responses occupy a central
place in almost any explanation of military expenditures (e.g.,
Palmer 1990; Powell 1999; Richardson 1960), then spatial
econometric models are appropriate. The advancement of
spatial econometric models means that scholars can model



200

150

100

50

-03 -02 -0.1 0.0 0.1 0.0

0,=04;0,=04

91 = 04, 92 =04

Volume 83 Number 2 April 2021 / 733

91 = —0.8; 92 =-0.8

91 = —0.8; 92 =-0.8

100

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 50
1

1

1

1

1

1

- 0 -

1 1
0.1 0.2 -08 -06 -04 -02 0.0
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Carlo simulations. Vertical lines represent 95% confidence intervals (dashed) and the true higher-order effects for x, (solid).

the precise manners in which choices (such as military
expenditures) or conditions (such as instability) spill over into
neighboring countries (see, e.g., Flores 2011; Pliimper and
Neumayer 2015; Shin and Ward 1999). Of course, theory
might suggest that defense burdens in i directly influence de-
fense burdens in #’s neighbors through a single global auto-
correlation coefficient (SAR), or defense burdens in i influence
defense burdens in ’s neighbors through multiple patterns of
connectivities or with a temporal delay (SLX), or defense bur-
dens in 7 are unrelated to defense burdens in 7’s neighbors (non-
spatial ordinary least squares [OLS]). Although theory can guide
this decision, the true process driving military spending is un-
known. We argue that a reasonable starting place given this in-
herent uncertainty is the SLX model since it provides a more
flexible specification for estimating spatial heterogeneity and
because it avoids some of the problematic assumptions hidden
in SAR models.

To provide an applied example of the modeling choices that
we discussed and simulated above, we collected data from 1953
to 2008 in 193 countries, both developed and developing, dem-

ocratic and authoritarian. We measured defense spending in a
manner similar to other scholars (Phillips 2015; Whitten and
Williams 2011) as a country’s defense burden, or military ex-
penditures as a percentage of gross domestic product (GDP).
We use the measure developed by Phillips (2015), who uses
expenditure data from both the Stockholm International Peace
Research Institute and the Correlates of War national ma-
terial capabilities data (Singer and Small 1972) divided by
GDP data from the Penn World Table version 6.3 (Heston,
Summers, and Aten 2009). Both theories of budgeting and
previous research tell us that defense burdens are highly auto-
regressive; the budget in one year is highly dependent on the
previous year plus responses to short-term fluctuations.” As a
result, the Defense Burden variable is nonstationary in most

20. This is a general feature of budgeting processes in organizations.
As Ostrom and Marra (1986, 822) note, “given the complexity of the be-
havior under examination and the cognitive limitations of decision makers, it is
highly unlikely that the budget decisions of any of the organizations are rebuilt
from zero each year.”
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countries.”’ This poses a substantial problem for inferences
since it increases the risk of spurious results (Granger and New-
bold 1974). Since defense burdens are first-order integrated,
taking the first difference makes the series stationary. To fur-
ther control for the dynamics of defense burden, we include
the level in the previous year (Defense Burden,_,) and the pre-
vious change (ADefense Burden,_,).”

For the purposes of comparing different ways of estimating
spatial econometric models, we begin with a simple model of
defense burden. We include Total Population (logged) to ac-
count for larger countries having larger defense burdens. We
also take into account the impact of domestic and international
instability by including a dichotomous variable representing
the presence of a Civil War that is an armed conflict resulting
in at least 25 battle-related deaths in a year (Allansson, Me-
lander, and Themner 2017) and Interstate War (coded 1 if the
hostility level of the militarized interstate dispute reaches 5).
We expect that both interstate wars and civil wars will have a
meaningful impact on defense burdens. A large portion of the
time period under examination occurs in the Cold War, where
military spending is driven by alliance commitments and ac-
tions of the two superpowers (for a review of this literature, see
Goldsmith [2003], 557-59). We thus believe that the degree of
responsiveness to the superpowers’ changes in spending will
be conditioned by the presence of an alliance with the United
States (Plimper and Neumayer 2015). To take this into account,
we include two interaction variables (and their lower-order
terms) made up of Alliance with US (coded 1 if the state has an
alliance with the United States according to the Correlates of
War), AUS Military Expenditures, and AUSSR/Russian Mil-
itary Expenditures. Finally, Plimper and Neumayer (2010) dem-
onstrate that unmodeled spatial and temporal shocks can
falsely suggest spatial dependence. To guard against this pos-
sibility, we include Trend (which is coded 1 for 1950 and in-
creases each year), a dichotomous variable for 1992, and regional
variables.”> Although there are a variety of ways of specifying
the connections between countries (for some alternatives, see
below), for the simple preliminary analysis we use a binary,
un-row-standardized contiguity weights matrix.**

21. We estimate separate augmented Dickey-Fuller tests for each country
with a long enough time series to get stable test statistics. In the original De-
fense Burden variable, we can reject the null hypothesis of a unit root at the
90% confidence level in only 29% of the countries. We reject the null hy-
pothesis in 99% of the countries for the ADefense Burden,_, series.

22. There is a considerable debate about the casual use of lagged depen-
dent variables to control for temporal dependence (see Wilkins [2018] for an
overview of this debate).

23. In a model with annual fixed effects, 1992 is the only year that is
statistically different from the others.

24. As Neumayer and Pliimper (2016) note, the decision to row stan-
dardize the weights matrix should follow closely from one’s theory. In the case

We first compare the results of the nonspatial OLS model
(model 1) to the SAR model (model 2) in table 3. The results
clearly show that ignoring spatial dependence forces OLS to
overestimate the immediate impacts of the covariates; almost
all of the OLS coefficients are larger (either more negative or more
positive) than their SAR counterparts (Ward and Gleditsch 2008,
68-69). Most notably, the nonspatial OLS would lead scholars
to falsely conclude that there is no spatial dependence in states’
defense burdens. The SAR model corrects this mistake. As
expected, our estimate of the global spatial autocorrelation
coefficient, p, is statistically significant and positive, indicat-
ing that the defense burdens of contiguous states are posi-
tively correlated. In other words, we have found evidence that
increases to one state’s defense burden simultaneously induce
increases in its neighbors’ defense burdens (see also Flores
2011). The result is that covariates, such as civil and interstate
wars, influence defense burdens directly (via ) and indirectly
through spatial diffusion (via p).”

However, as we discussed above, the various assumptions
underpinning SAR models may not be consistent with how
these processes actually work. Most notably, it is possible that
to the extent that spillovers occur, they occur with a delay.
Indeed, because of incrementalism in budgeting, defense out-
lays are likely to be highly path dependent and thus respon-
sive to other countries’ outlays with a temporal lag. In other
words, if states are responsive to the spending patterns by other
states, responses will occur one year later rather than simul-
taneously. Given this clear distinction, there is ample justifica-
tion for estimating an SLX model with temporal lags rather than
with an endogenous SAR model in which spatial effects are
instantaneous.

In the case of defense spending, we believe that the SLX
model offers the added benefit of allowing one to properly
model spatial heterogeneity. More specifically, as outlined above,
the SLX model offers a great deal of flexibility in specifying the
particular spatial patterns (if any) that are theorized to govern
different variables. This heterogeneity can be accomplished
by determining which other countries are important spatially
(via the W) and by allowing the strength (and sign) of the
spatial clustering to vary by variable. This flexibility is par-
ticularly helpful when it comes to modeling conditional pat-
terns of spatial dependence and varying degrees of higher-
order effects. We think this is more appropriate than estimating

of defense burdens, we believe that all countries are not equally influenced by
their neighbors” burdens. Instead, the degree to which one state is influenced
is based partly on the number of neighbors. Only those states that are con-
tiguous by land or river are coded as neighbors, according to the Correlates
of War project.

25. In the appendix, we move beyond the coefficients to provide a
more in-depth exploration of total, direct, and indirect effects.



Table 3. Nonspatial OLS, SAR, and SLX Models of Neighborhood Effects on Defense Burdens

OLS SAR SLX
Model 1 Model 2 Model 3
Spatial estimates (o and 0):
0 Q7+
(.004)
Contiguity x Civil War,_, —.11*
(.07)
Contiguity X Interstate War,_, 18
(.07)
Ally x Interstate War,—; —.006
(.03)
Contiguity x Defense Burden,_, .006***
(.002)
Defense Pact x Defense Burden,_; .003%%*
(.001)
Nonspatial estimates (3):
Civil War,_, — 47X —.45%%% —.39%*
(.17) (.16) (.15)
Interstate War,_, 460%* 4500% 37
(.16) (.16) (.16)
Total Population (Logged),—, .03 .03 .02
(.02) (.02) (.02)
Alliance with US —.21% —.22%% —.15%
(.10) (.09) (.08)
AUS Defense Burden —.04 —.03 —.05
(.07) (.07) (.08)
AUSSR/Russia Defense Burden .006 —.01 —.05%*%
(.02) (.02) (.02)
US Ally x AUS Defense Burden .14 11 21
(.12) (.11) (.13)
US Ally x AUSSR Defense Burden .005 .01 .02
(.03) (.03) (.02)
Annual Trend —.007%%* —.006%** —.004**
(.002) (.002) (.002)
1992 1.13%%* 740K —1.26%%*
(.28) (.27) (.21)
Defense Burden,_; —.120%¢ —. 120 —. 1406
(.006) (.01) (.006)
ADefense Burden,_; —.14%%% —.130%¢ —. 1406
(.01) (.02) (.01)
Constant 46 A1* 22
(.22) (.21) (.17)
N 6,328 6,328 7,266

Note. Models include regional fixed effects. The SAR model excludes isolates.

*p<.L
> p <.05.
o p <01
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one global spatial autocorrelation coefficient (p) that dictates the
same spatial process for all the variables.

To demonstrate the flexibility in modeling various spatial
patterns, we add the SLX variables derived from three weights
matrices (contiguity, alliance commitments, and defense pacts)
to reflect the following expectations:

1. We expect that civil wars in neighboring states will
have an impact on states’ defense burdens, but there
are possibly conflicting reasons for the impact (Phil-
lips 2015). To account for these spatial patterns, we
include Contiguity x Civil War,_,.

2. States are likely to increase their defense burdens
in response to interstate wars that either increase
their own instability or demand that they fulfill al-
liance commitments. To account for these expecta-
tions, we include Contiguity x Interstate War,_ and
Alliance x Interstate War,_,.

3. TLSL variables measure the influence of neighbors’
defense burdens in the previous year. We believe
that states will respond positively to prior military
spending patterns by both contiguous states and
those states with which they share a defense pact.

We include Contiguity x Defense Burden, , and

1
Defense Pact x Defense Burden,_ ;.

Results from the SLX model (model 2 in table 3) show that
a flexible estimation technique (such as SLX) is necessary to
derive accurate inferences about spatial patterns. Recall that
the SAR model is limited to one specification of the neighbors’
connections (via W) and one global spatial autocorrelation
parameter (p).” The SLX model shows that both of these
constraints are questionable at best. It reveals that countries’
defense burdens are connected in more than one way; a sin-
gle covariate (such as Defense Burden,_,) can exhibit spatial
dependence through multiple weights matrices (in this case,
contiguity and defense pacts), and the nature of this connec-
tivity may differ across covariates (e.g., Interstate War,_, and
Defense Burden,_,).

The second constraint of the SAR model—that the single p
parameter accurately reflects the patterns of spatial depen-
dence—is also potentially damaging. The coefficients for the
spatial estimates (6) are statistically different (at the 95% con-

26. This is the same obstacle that Flores (2011) faces. He makes a number
of statements suggesting that countries’ responses to their neighbors” defense
burdens are conditioned by circumstances such as alliance commitments and
neighborhood size. These patterns of conditional spatial dependence are quite
reasonable, but Flores (2011) is unable to make those inferences from SAR
models with one global autocorrelation parameter.

fidence level) in some cases, which means that, for example,
the effects of contiguity are more negative for civil wars than
interstate wars, and interstate war can influence defense bur-
dens differently on the basis of either contiguity or alliance
patterns.”” Since the coefficients for the two SLX variables for
Defense Burden,_, are in the opposite direction as the direct
effect, it points to a different spillover story than the one from
the SAR model. In both models, increases in i’s Defense Bur-
den at t — 1 lead to decreases at time ¢ for i (3 = —0.14 in
the SLX model, and 8 = —0.12 in the SAR model). In the SLX
model, an increase in 7’s defense burden at t — 1 positively spills
over in the defense burdens of s neighbors at t (6, = 0.006,
and 6, = 0.003); in the SAR model, an increase in i’s defense
burden at t — 1 decreases its defense burden at ¢, which leads
to decreases in i’s neighbors’ burdens because of positive spa-
tial dependence (p = 0.07). The two models therefore give
contrasting explanations of the influence of Defense Burden
in neighbors, depending on whether y; is influenced by x; (in
the SLX) or y, (in the SAR). The fact that the direct and in-
direct coefficients are different signs in the SLX model implies
that the SAR model (with its global autocorrelation coeffi-
cient) cannot accurately reflect the spatial patterns present in
Defense Burden,_,.

This exploration of defense spending highlights a signifi-
cant advantage of SLX models related to spatial heterogeneity.
In this case, states’ defense burdens are spatially dependent in
more than one way, and the strength of spatial dependence var-
ies across connection type and covariate. Both of these—com-
bined with the ability to model higher-order and conditional
spatial effects—suggest that SLX models offer the key to un-
locking a treasure trove of spatial inferences.*®

PATHS FORWARD

From our discussion and findings above, it is clear that we
are advocates of the simplicity offered by the SLX approach.
Our goal, however, is not to suggest that the SLX is a superior
model for all spatial econometric enterprises. Rather, we ad-
vocate for this approach on the basis of several important re-
alities when it comes to the adoption of spatial models in po-
litical science. First, many applied researchers are not exposed
to spatial models in a way that is complementary to their
training (i.e., building from basic linear models). Likewise,
many researchers interested in spatial models likely find the

27. In the former case, F-tests suggest that we can reject the null of
equal coefficients at the 99% confidence level; in the latter case, we can
reject the null of equal coefficients at the 95% confidence level.

28. In the appendix, we first reveal that the extent to which civil wars
drive military spending in nearby states depends on the particular region,
and then we demonstrate how to incorporate higher-order effects in the
SLX model.



current offerings of software tools insurmountable to getting
started.”” Without more accessibility, widespread adoption is
less likely. How then, should applied researchers proceed when
choosing the spatial model that best fits their theory?

A variety of typologies exist for categorizing spatial pro-
cesses (e.g, Darmofal 2015; Vega and Elhorst 2015), but a par-
ticularly elegant typology is demonstrated by Cook et al. (2015).
The authors note that spatial dependence can arise from spatial
clustering in the outcomes (e.g., pWy), spatial clustering in the
observables (e.g., WZ#), or spatial clustering in the unobser-
vables (e.g., A\Wp). These typologies demonstrate, among other
things, that there are more than just two models to consider
on the spatial econometric menu. Without repeating the full
listing, several of these models have particular relevance for our
discussion in this article—especially when it comes to model
choice. The so-called spatial Durbin model (SDM) is in some
ways a middle ground between an SLX and SAR because it
allows for modeling spatial dependence both between outcomes
(e.g. ¥, y;) and between predictors and outcomes (e.g., X;, yi;
Elhorst 2014, 9):

y = XB + oWy + WZ0 + ¢. (14)

Cook et al. (2015) suggest starting with a more general
spatial model and then testing the restrictions to pare down
the model of unnecessary spatial components. Since it is dif-
ficult to recover estimates of the general nesting spatial model
(i.e., one with estimates of all three spatial parameters) because
of weak identification, Cook et al. (2015) suggest two strategies
depending on the goal of the project. If there is concern about
accurately characterizing the spatial process, then a spatial auto-
correlation model is appropriate; if there is concern about get-
ting accurate estimates of the effects of covariates, then the
SDM is appropriate. Our approach is similar in that we advo-
cate thinking carefully about theory and whether there are
any expectations for higher-order effects, specifying the the-
oretically motivated model, and then testing the accuracy of
those model specifications. If any differences between our ap-
proaches arise, it is the point of departure—which we advocate
in most political science applications is more closely approxi-
mated by the SLX model. This is especially the case in the
context of the SAR being the only relatable alternative.

Our advice for the applied researcher is to first follow theory
and apply the most analogous spatial model. If, for example,

29. It is worth pointing out that this is changing with more recent
releases of Stata and continual updating of the available R packages. Yet,
estimation and interpretation are still far less straightforward than com-
peting approaches of dealing with spatial heterogeneity—many of which
aim to treat it is as nuisance rather than substance.
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the goal is to account for all spatial dependence, then the SDM
or other alternatives (e.g., spatial error models) that capture
and eliminate spatial noise in the unobservables may be more
useful. It is often the case, however, that one’s theory does not
provide clear guidance and available diagnostics are uncertain.
Which of the two prominent models is less prone to inferen-
tial errors as a result of misspecifying the type of dependence?
In the appendix, we provide evidence that the SLX model is
more robust to misspecifying the source of the spatial depen-
dence. Additional Monte Carlo analysis based on a DGP with
dependence in the error terms (one that is consistent with a
spatial error model) shows that simple SLX specifications cor-
rectly recover true average effects of variables at expected rates.
SAR models, however, have unsatisfactory recovery rates (i.e.,
much lower than 95%) for first-order indirect effects and, as a
result, the total effects. The SAR is only really appropriate for
those theories that specify global dependence in the outcomes
among all units—something that we demonstrate is relatively
rare in political science. When in doubt, political scientists are
well served to start with an SLX.

CONCLUSION

The increased use of spatial models in political science is a
welcome trend that involves the relaxation of the incredible
assumption that there are no contagion or spillover effects
across our observations. However, as our review of this lit-
erature demonstrates, there is often a substantial disjuncture
between expressed theories of spatial relationships and the
models that political scientists estimate. This disjuncture has
been particularly prevalent in projects that use the SAR model.
We have shown that the SLX model is a good starting point
for spatial econometrics in political science because of its flexi-
bility in model specification, ease in estimation, and simplicity
in interpretation.

Building on previous works, we provide a comprehensive
comparison of the limits of both the SAR and SLX models
using simulations. Our Monte Carlo analyses indicate that,
even if the true DGP is SAR, the SLX performs quite well at
detecting spatial relationships at typically observed levels. The
same cannot be said of the SAR when the true DGP is SLX.
This is especially the case if there are even relatively small
amounts of heterogeneity in terms of the spatial effects across
independent variables in the DGP. Our suggested approach
places the power of specification in the researcher’s hands and
the ability to turn unrealistically imposed assumptions from
SAR models into testable propositions.

Our findings in this study lead us to a set of four consid-
erations that researchers should keep in mind when employing
spatial models to test their theories. First, researchers should



738 / X Marks the Spot Cameron Wimpy, Guy D. Whitten, and Laron K. Williams

carefully consider the nature of spatial dependence in their
theories and choose a model that best reflects their expectations
of how these processes work. Second, unless their theories are
about global dependence among outcomes, they should start
with a simple SLX model and work from there toward more
complex models and specifications as appropriate. Third, when
they suspect that the spatial diffusion processes are heterogeneous,
researchers should employ the SLX with varied specifications
of matrices based on these expectations. And fourth, researchers
should move beyond a cursory discussion of the direction and
statistical significance of the spatial parameters to an interpre-
tation of all the estimated effects (i.e., direct, indirect, and total).

Although we have critiqued the choice of the SAR model
for many political science applications, we do not begrudge its
use under the proper circumstances—theorized endogenous
and global dependence among outcomes. In this article, we
aimed to move the spatial revolution in political science to a
place where researchers are more easily able to implement, in-
terpret, and understand the applications. The SLX model fills
this void by providing a more flexible mapping onto most po-
litical science theoretical expectations and by presenting fewer
challenges to specification and interpretation.
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