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Time lag spatial lag models

In our paper we describe a model with a temporally lagged spatial lag model as being a
variant of an SLX model rather than a SAR model. This is because such a model does not
have one of the defining characteristics of SAR models, endogenous regressors. As Lesage
and Pace (2009: 192) write, such a model “relies on past period dependent variables and
contains no simultaneous spatial interaction.” In this section we provide some more details
about models with temporally lagged spatial lag model terms and how the results from them
are interpreted. To do this, we follow a set of notational and presentational conventions used
in Chapter 4 of Elhorst (2014). In that chapter, Elhorst provides a taxonomy of a set of
models that are dynamic in space and time.

Elhorst breaks the effects estimated by such models into four different categories: short-
term direct effects, short-term indirect effects, long-term direct effects, and long-term indirect
effects. The distinction between short-term and long-term effects is a common feature of time
series models while, as we discuss in our paper, the distinction between direct and indirect
effects is a common feature of spatial models.

For our purposes, we will consider a set of models beginning with one that is not dy-
namic in either time or space and then a select set of models that are dynamic in only one
dimension before discussing the temporally lagged spatial lag model which is dynamic in
both dimensions. Across all of these models we will assume a common panel data structure
with observations that vary across units and over time. If we follow Elhorst’s notational
convention of using only temporal subscripts, a simple regression model without any spatial
or temporal dynamics would be written as

yt = Xtβ + ϵt (1)

which we call a “non-spatial static model.”1 Because this model has no temporal dynamics, all
effects estimated from it will be short-term and because this model has no spatial dynamics,

1Following this notational convention is convenient because it allows the temporal dimension for each
term to be indentified by the subscripts and the spatial dimension of each term to be identified by the
presence or absence of the connectivity matrix (W). yt and Xt contain the N observations for each unit at



all effects from it will be direct. Thus for a one unit increase in a particular independent
variable, xk, the effect will simply be an immediate (short-term direct) increase of βk.

If we add temporal dynamics to Equation 1 in the form of a lagged dependent variable,
our model becomes

yt = yt−1ϕ+ Xtβ + ϵt (2)
which we will call a “non-spatial dynamic model.” For a one unit increase in a particular
independent variable, xk, there will now be both a short-term effect of βk and a long-term
effect of βk(1 − ϕ)−1. From a spatial perspective, both of these effects are direct because
they are caused by changes in the value of the independent variable in one unit on the value
of the dependent variable for that same unit.

If we add spatial dynamics to Equation 1 in the form of a spatially lagged independent
variable, our model becomes

yt = Xtβ + WZtθ + ϵt (3)

which we will call a “temporally static SLX” model.2 As the name implies, the effects from
such a model will all be short-term. For a one unit increase in a particular independent
variable, xk, there will be a short-term direct effect of βk. This model, of course, also has
indirect effects are come from the WZtθ. Thus, for instance, the effects of a global increase
in a spatially-specified independent variable, zk, would be Wθk.

If we add spatial dynamics to Equation 1 in the form of a spatially lagged dependent
variable, our model becomes

yt = ρWyt + Xtβ + ϵt (4)

which we will call a “temporally static SAR” model. As with the temporally static SLX, the
effects from such a model will all be short-term. The direct effect from a SAR model is [(IN−
ρW)−1βkIN ]d̄, where following Elhorst’s notation, d̄ is a calculation of the mean diagonal
element of a matrix.3 And the indirect effects from such a model are [(IN −ρW)−1βkIN ]rsum,
where rsum is a calculation of the mean row sum of the non diagonal elements of a matrix.

Turning to the model of interest, we write the temporally lagged spatial lag model as

yt = Xtβ + Wyt−1θ + ϵt (5)

time t so that yt = Xtβ + ϵt expands into


y1

y2

...
yT

 =


X1

X2

...
XT

+


ϵ1
ϵ2
...
ϵT

 and each of the vectors and matrices in

this expansion expands further into N items. E.g., each of the yt =


y1t
y2t
...

yNt

 .

2As discussed in the paper, we specify the independent variables associated with spatial-X effects as Z to
emphasize the point that the variables in X and Z do not have to be the same. Elhorst, and many others,
specify both matrices identically as X or, as in Elhorst’s Chapter 4 discussion of different combinations of
models in time and space, Xt.

3The components of the short-term direct effects for the SAR model are often separated into the pre-
spatial direct effect, βk, and then the spatially-filtered direct effect, [(IN − ρW)−1βkIN ]d̄.
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using θ instead of ρ to emphasize that this model is essentially an SLX model. But, because
this model is both temporally and spatially dynamic, it will have a combination of both
short-term and long-term effects as well as direct and indirect effects. In essence, the θ
term in Equation 5 plays the role of an individual θk term inside θ in Equation 3 with the
addititonal complication that the temporal impact of this term works in a fashion along
the lines of the ϕ term in Equation 2. Thus, the temporally lagged spatial lag model has
unfiltered short-term direct effects, βk, just like those of the non-spatial dynamic model and
the temporally static SLX, but it has no short-term indirect effects. This is the case precisely
because the spatially lagged component of the model, Wyt−1θ, is also temporally lagged. To
better understand how this term works, we can write Equation 5 back one time period as

yt−1 = Xt−1β + Wyt−2θ + ϵt−1 (6)
and then substitute the right-hand side of Equation 6 into Equation 5,

yt = Xtβ + W(Xt−1β + Wyt−2θ + ϵt−1)θ + ϵt (7)

which, if the data being modeled are temporally stationary, meaning |θ| < 1, will lead to
decreasing effects as we move more temporally distant from any change in lagged values of yt,
Xt, or ϵt. These longterm effects consist of own unit, or direct, effects of [(IN−θW)−1β1kIN ]d̄
and indirect effects of [(IN − θW)−1β1kIN ]rsum.

In Table 1 we provide the specifications of all 5 of the models that we discuss in this
section and in Table 2 we provide a listing of the four different effects from each model. If we
look across the entries for each model in Table 2, we can see that the temporally lagged spatial
lag model is very different from the temporally static SAR. It does not have the defining
characteristic of short-term endogenous effects. Instead, what it has is a combination of long-
term direct effects and long-term indirect effects which combine elements of the non-spatial
dynamic model and the temporally static SLX. And as we note in the paper, the SAR spatial
multiplier matrix, (IN−ρW)−1 incorporates immediate feedback through terms like W2 and
W3. In contrast, the temporal decay multiplier of the temporally lagged spatial lag model,
(IN − θW)−1, is simply a spatially weighted geometric lag (aka a Koyck lag) function which,
as long as stationarity conditions are met, means that temporally more distant changes have
smaller effects.

Additional Experiments

SAR Model Performance for SAR DGP

In this section we detail how the “correct” models perform for SAR and SLX data-generating
processes, respectively. In both cases, the recovery rates of the coefficients are, as expected,
close to 95%. We provide these results in Tables 3 and 4.
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Table 1: Different specifications of temporal and spatially lagged models

Model Name Specification

Non-spatial static model yt = Xtβ + ϵt
Non-spatial dynamic model yt = yt−1ϕ+ Xtβ + ϵt
Temporally static SLX yt = Xtβ + WZtθ + ϵt
Temporally static SAR yt = ρWyt + Xtβ + ϵt
Temporally lagged spatial lag model yt = Xtβ + Wyt−1θ + ϵt

Notes:

Second-Order Neighbor Model Performance for SAR DGP

One possibility that we explored in the paper addressed the particular functional form of
the higher-order weights matrices. A specification mirroring the SAR by squaring W (seen
in Equation 9 in the manuscript) produces non-zero values along the diagonal of the partial
derivatives matrix, which means that there are feedback effects, and higher-order effects more
generally. If deemed unnecessary by theory, the functional form of the weights matrix can
be modified so that it expressly prohibit feedback effects. This specification would identify
higher-orders of contiguity (see the second-order weights matrix, W2nd in Figure 1). The
third set of experiments evaluates how well a model specified as

y = xβ +Wxθ1 +W2ndxθ2 + ϵ (8)

deals with an SAR DGP where feedback effects are present. As we can see from the third
section in Table 5, which is the same as Table 2 in the manuscript with this additional set
of results, this change in the specification from W2 to W2nd results in a serious reduction
in the recovery rates of the zero-order direct effect, which is now larger, on average, because
it has to account for the spatial effects that would otherwise be modeled as feedback effects.
Furthermore, the recovery rates for the second-order direct effects are, by construction, 0%.4
We would only advocate this type of model specification if two conditions are met: first, the
theory is quite clear about the impossibility of feedback effects, and second, these feedback
effects are shown to be zero in robustness checks.

Spatial Error Model (SEM)

A popular alternative to the SAR and SLX models is the spatial error model (SEM).5 Instead
of the spatial dependence arising in the outcomes (as in yi influencing yj, and vice versa)

4Indeed, if we include second- and third-order contiguity weights matrices, we are able to model some of
the higher order effects but still none of the feedback effects.

5The description of the SEM draws heavily from Ward and Gleditsch (2008: 65-67).
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Table 3: Recovery Rates for the SAR Model Specification: SAR Data-Generating Process

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

SAR model: y = Xβ + ρWy + ϵ

β 94.2 94.5 94.7 93.3 95.6 93.6 95.6 94.8 95.1
ρ 93.5 95.7 95.1 93.9 94.0 94.6 95.1 94.2 95.4

or in the observables (as in xi influencing yj), the SEM models spatial dependence in the
unobservables, or errors:

y = Xβ + λWµ+ ϵ (9)

where the overall error is decomposed into ϵ, “a spatially uncorrelated error term that sat-
isfied the normal regression assumption, and [µ], which is a term indicating the spatial
component of the error term” (Ward and Gleditsch 2008: 65-66). If λ is 0, then there is
no spatial dependence in the errors and an OLS can be safely estimated; if λ is not 0, then
“we have a pattern of spatial dependence between the errors for connected observations”
(Ward and Gleditsch 2008: 66). This poses no complications for generating quantities of
interest, as “the differences in the independent variables in i do not have effects on outcomes
in observations connected to i” (Ward and Gleditsch 2008: 67). Essentially, this means that
variables will only have a direct effect (i.e., xi on yi) and no indirect effects (such as xi on
yj), feedback or otherwise.6

We echo Beck, Gleditsch and Beardsley’s (2006: 30) conclusion that the SEM is not
appropriate in most political science applications. This is because a variable can have an
impact on neighboring observations if omitted (and thus part of the error term), but not if
it is included. Consider the example of economic growth in an SEM model:

[…] remember that the “errors” are just the variables that we either chose not to
measure, or could not measure. In particular, they are errors from the perspec-
tive of the analyst, not the perspective of policy makers in the country. Thus, if
Germany grew more quickly because of some variable not included in the specifi-
cation, that growth would affect all other countries. But if Germany grew more
quickly because it had a left government, and if that variable were included in
the specification, then this extra German growth would have no impact on the
growth in other countries (30).

It remains to be seen how SLX and SAR models perform when the true data-generating
process features spatial dependence in the unobservables, which is typically consistent with

6Darmofal (2015: 107-108) succinctly states that “because the spatial multiplier in a spatial error model
pertains only to the errors, substantive covariates do not vary in their equilibrium effects based on the spatial
locations of the observations in a spatial error formulation.”
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Table 5: Recovery Rates for Various SLX Model Specifications: SAR Data-Generating Pro-
cess

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Simple SLX model: y = xβ +Wxθ + ϵ
Direct: Total 94.9 94.4 94.8 93.7 95.5 93.5 95.0 94.0 88.9

0 Order 77.9 91.9 95.1 93.5 95.5 93.4 94.8 90.7 81.0
2nd Order – – – – – – – – –
3rd Order – – – – – – – – –

Indirect: Total 15.1 49.9 85.2 93.7 95.2 93.5 40.3 0 0
1st Order 91.4 93.8 95.5 93.1 95.2 94.5 94.4 93.8 93.1
2nd Order – – – – – – – – –
3rd Order – – – – – – – – –

SLX model with a squared term: y = xβ +Wxθ1 +W2xθ2 + ϵ
Direct: Total 95.0 94.0 95.1 93.8 95.4 94.0 95.2 94.4 91.0

0 Order 94.2 95.1 95.2 94.2 93.6 94.8 94.8 94.9 95.8
2nd Order 93.2 93.9 94.7 94.6 94.0 94.7 93.6 93.4 93.8
3rd Order – – – – – – – – –

Indirect: Total 93.0 94.7 94.8 94.7 93.9 94.5 93.3 83.7 2.6
1st Order 93.0 94.9 95.9 94.0 94.9 94.9 94.4 93.2 92.6
2nd Order 93.2 93.9 94.7 94.6 94.0 94.7 93.6 93.4 93.8
3rd Order – – – – – – – – –

SLX model with a second-order term: y = xβ +Wxθ1 +W2ndxθ2 + ϵ
Direct: Total 95.5 93.6 95.0 93.9 96.3 93.3 95.7 93.8 91.0

0 Order 76.1 89.9 95.1 93.7 96.3 93.8 95.3 89.5 77.9
2nd Order 0 0 0 0 0 0 0 0 0
3rd Order – – – – – – – – –

Indirect: Total 95.3 94.0 95.1 95.8 95.0 95.4 94.5 90.6 36.0
1st Order 96.5 95.4 95.9 94.2 95.2 95.6 95.0 91.7 88.4
2nd Order 95.0 94.5 94.7 95.8 94.5 95.3 94.1 94.6 93.6
3rd Order – – – – – – – – –

SLX model with squared and cubed terms: y = xβ +Wxθ1 +W2xθ2 +W3xθ3 + ϵ
Direct: Total 95.0 94.2 94.6 94.3 96.1 94.4 94.5 93.7 93.4

0 Order 94.2 95.1 95.3 94.1 93.9 94.9 94.3 94.9 95.9
2nd Order 93.9 94.0 94.8 95.2 94.2 95.2 93.8 93.2 93.3
3rd Order 94.2 93.6 94.7 93.5 95.0 94.4 95.0 93.9 93.4

Indirect: Total 95.5 95.1 95.6 94.4 95.2 94.5 93.9 92.6 87.0
1st Order 94.3 94.7 95.1 93.9 94.9 93.7 93.9 95.2 94.4
2nd Order 93.9 94.0 94.8 95.2 94.2 95.2 93.8 93.2 93.3
3rd Order 94.2 93.6 94.7 93.5 95.0 94.4 95.0 93.9 93.4
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an SEM model. In other words, if one is uncertain about the true spatial process at work
and diagnostics are uncertain, how dangerous is it to begin with a SLX or SAR model if
there is spatial dependence in the unobservables? LeSage and Pace (2009: 157-159) point
out that the result is “unbiased but inefficient coefficient estimates” and “inference regarding
dispersion of the explanatory variables based on the asymptotic variance-covariance matrix
for the SAR model will be misleading, since error dependence is ignored when constructing
the variance-covariance matrix”.

To explore this possibility we simulate data based on the following equation (Darmofal
2015: 102):

y = xβ + ϵ, ϵ = λWϵ+ ξ (10)

with matrix X containing a single variable drawn from a uniform distribution, x ∈ [−10, 10],
and where β = 1. W is an N × N symmetric row-standardized contiguity weights matrix,
where each element below the diagonal is randomly drawn from a Bernoulli distribution.
We simulated 1000 data sets at each of nine different scenarios defined by the strength
of the spatial error dependence, λ ∈ {−0.8, 0.8}.7 As with the experiments presented in
the manuscript, we focus on the recovery rates for direct and indirect effects of x since
those reflect both the coefficients and their uncertainty. Table 5 shows the results of the
experiments.

Two clear patterns emerge from Table 6. The first pattern is that the SAR model does
a poor job of recovering the first-order indirect effect (which is actually 0) in the SEM DGP
for models of λ that are lower than lower than 0 or larger than 0.2. In those case, the SAR
model finds false evidence that xi influences yj through the outcomes (i.e., by influencing
yi). Since the SAR model finds “phantom” first-order indirect effects that do not actually
exist, it also does a poor job in recovering the true average total effects (not shown). The
second pattern is that the various specifications of the SLX model—ranging from a simple
model with only first-order indirect effects to one with first- through third-order effects—
recovers estimates of the direct and indirect effects that are consistently close to 95% for all
values of λ. The SLX is more flexible in this respect because the θs are effectively 0, which
rules out higher-order effects. For these two reasons, it appears as though the SLX model
is more robust to incorrectly specifying the spatial dependence when it actually occurs in
the unobservables. If one is only concerned about generating meaningful inferences for the
explanatory variables, then this type of misspecification is not problematic; of course, if one
is interested in modeling the actual spatial process, then the SLX would be unable to show
that the spatial dependence actually exists in the unobservables.

7It is worth noting that values of λ close to the absolute value of 1 are exceedingly rare in practice.
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Table 6: Recovery Rates for SAR and Various SLX Model Specifications: SEM Data-
Generating Process

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

SAR model: y = xβ + ρWy + ϵ
Direct: Total 94.6 94.3 94.5 93.4 95.3 93.8 95.1 94.7 93.4

0 Order 94.7 94.4 94.3 93.8 95.6 93.6 95.3 94.7 93.5
2nd Order 98.0 99.4 99.8 99.8 100 99.9 99.9 99.6 99.0
3rd Order 100 100 100 100 100 100 100 100 100

Indirect: Total 59.9 72.1 83.8 90.1 93.9 97.7 97.3 96.2 93.1
1st Order 66.9 77.6 87.3 91.2 94.0 94.3 90.0 82.6 73.1
2nd Order 98.0 99.4 99.8 99.8 100 99.9 99.9 99.6 99
3rd Order 100 100 100 100 100 100 100 100 100

Simple SLX model: y = xβ +Wxθ + ϵ
Direct: Total 94.9 94.8 94.9 93.8 95.5 93.5 95.3 94.9 93.9

0 Order 94.9 94.8 94.9 93.8 95.5 93.5 95.3 94.9 93.9
2nd Order – – – – – – – – –
3rd Order – – – – – – – – –

Indirect: Total 94.0 95.5 95.8 93.1 95.2 94.5 94.8 94.3 95.6
1st Order 94.0 95.5 95.8 93.1 95.2 94.5 94.8 94.3 95.6
2nd Order – – – – – – – – –
3rd Order – – – – – – – – –

SLX model with a squared term: y = xβ +Wxθ1 +W2xθ2 + ϵ
Direct: Total 95.0 94.1 95.0 93.8 95.4 94.0 95.2 95.1 94.0

0 Order 94.2 95.1 95.2 94.2 93.6 94.7 94.7 95.0 95.3
2nd Order 94.4 94.0 94.9 94.6 94.0 94.7 93.8 93.9 94.8
3rd Order – – – – – – – – –

Indirect: Total 96.2 95.1 95.0 94.7 93.9 94.4 93.6 92.2 93.3
1st Order 94.8 95.5 96.0 94.0 94.9 94.9 94.8 93.9 95.6
2nd Order 94.4 94.0 94.9 94.6 94.0 94.7 93.8 93.9 94.8
3rd Order – – – – – – – – –

SLX model with squared and cubed terms: y = xβ +Wxθ1 +W2xθ2 +W3xθ3 + ϵ
Direct: Total 94.8 94.2 94.6 94.3 96.1 94.5 94.8 94.5 95.2

0 Order 94.2 95.0 95.3 94.1 93.9 94.8 94.3 94.9 95.4
2nd Order 94.8 94.0 95.0 95.2 94.2 95.3 93.9 93.3 94.3
3rd Order 94.6 93.8 94.8 93.6 95.0 94.6 95.3 94.3 94.4

Indirect: Total 95.8 95.5 95.8 94.5 95.2 94.5 94.0 93.2 93.4
1st Order 94.7 94.8 95.1 93.9 94.9 93.7 93.9 95.2 94.3
2nd Order 94.8 94.0 95.0 95.2 94.2 95.3 93.9 93.3 94.3
3rd Order 94.6 93.8 94.8 93.6 95.0 94.6 95.3 94.3 94.4
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Application

In this section we explore substantive effects from the defense spending application in the
manuscript, as well as some models to show how deftly SLX handles conditional spatial
dependence.

As shown in the SAR model of Table 7, both civil and interstate wars influence defense
burdens. Of course, the coefficients themselves are only the estimated direct effects of those
covariates on defense burden. To understand the total effect of the covariates, it is important
to utilize the partial derivatives approach. In the manuscript we showed that the total impact
of the covariates on the defense burden depend on the coefficient (β), the size of the change
in x (in the case of civil and interstate wars, the difference between a value of 0 and 1), the
global spatial autocorrelation coefficient (ρ), and each state’s distribution of neighbors (W).
Each state potentially has a different configuration of neighbors, which leads to different
indirect effects for each.

To simplify matters, we examine the average direct, indirect and total effects in Table 8.
From this table we can see that the estimated average total effect of a civil war at time t− 1
in a neighboring state on the defense burden of the focal state at time t is a reduction in
military spending as a percentage of GDP of −0.62%. The effect of a civil war in a state
results in a reduction in that state’s defense burden, on average, of −0.46%. Note that
this effect is slightly larger than the coefficient for civil wart−1; the difference is the result
of feedback effects, or the effects of civil war in state i influencing its neighbor j, which
feeds back to affect state i. The average indirect effect—or, the average effect of a civil
war in the focal state on other states is −0.17%. These effects demonstrate that civil wars
can meaningfully impact states’ defense burdens, and over a quarter of the overall effect
spills over into neighboring states. The effects of interstate wart−1 are similar in magnitude
and distribution between direct and indirect effects, except for being positive. On average,
experiencing an interstate war at time t− 1 increases that state’s defense burden by 0.46%,
and spills over to increase the defense burdens of neighboring states by 0.17%.

As we demonstrated with our Monte Carlo experiments, the consequences of model
choices can range from understating the overall effects, to making the opposite inference
regarding indirect effects. Recall that in the case of civil and interstate wars, the SLX
variables were consistent with the pattern of positive spatial dependence in the SAR model
(consistent with the positive ρ). When we compare the various effects of the SLX to the
SAR model for both of these variables (see Table 2), we see that the SLX produces average
total and indirect effects that are much larger (almost two and three times larger in the case
of interstate wart−1), and smaller direct effects. Since the SLX model does not force the
spatial autocorrelation to be represented by one parameter, the indirect effects are free to
vary in size based on the particular covariate. In the case of defense burdent−1, the average
total effects are much smaller in the SLX model because the coefficients for the two SLX
variables are signed in the opposite direction from the defense burdent−1 variable. In the
SAR model, contrary to expectations, increasing one’s defense burden by 1% is estimated
to decrease contiguous neighbors’ defense burdens by -0.04%; in the SLX model, this same
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Table 7: Non-Spatial OLS, SAR and SLX Models of Neighborhood Effects on Defense Bur-
dens

OLS SAR SLX
Model 1 Model 2 Model 3

Spatial Estimates (ρ and θ)
ρ 0.07∗∗∗

(0.004)
Contiguity×Civil Wart−1 -0.11∗

(0.07)
Contiguity×Interstate Wart−1 0.18∗∗∗

(0.07)
Ally×Interstate Wart−1 -0.006

(0.03)
Contiguity×Defense Burdent−1 0.006∗∗∗

(0.002)
Defense Pact×Defense Burdent−1 0.003∗∗∗

(0.001)

Non-Spatial Estimates (β)
Civil Wart−1 -0.47∗∗∗ -0.45∗∗∗ -0.39∗∗∗

(0.17) (0.16) (0.15)
Interstate Wart−1 0.46∗∗∗ 0.45∗∗∗ 0.37∗∗

(0.16) (0.16) (0.16)
Total Population (Logged)t−1 0.03 0.03 0.02

(0.02) (0.02) (0.02)
Alliance with US -0.21∗∗ -0.22∗∗ -0.15∗

(0.10) (0.09) (0.08)
∆US Defense Burden -0.04 -0.03 -0.05

(0.07) (0.07) (0.08)
∆USSR/Russia Defense Burden 0.006 -0.01 -0.05∗∗∗

(0.02) (0.02) (0.02)
US Ally×∆ US Defense Burden 0.14 0.11 0.21

(0.12) (0.11) (0.13)
US Ally×∆ USSR Defense Burden 0.005 0.01 0.02

(0.03) (0.03) (0.02)
Annual Trend -0.007∗∗∗ -0.006∗∗∗ -0.004∗∗

(0.002) (0.002) (0.002)
1992 1.13∗∗∗ 0.74∗∗∗ -1.26∗∗∗

(0.28) (0.27) (0.21)
Defense Burdent−1 -0.12∗∗∗ -0.12∗∗∗ -0.14∗∗∗

(0.006) (0.01) (0.006)
∆Defense Burdent−1 -0.14∗∗∗ -0.13∗∗∗ -0.14∗∗∗

(0.01) (0.02) (0.01)
Constant 0.46∗∗ 0.41∗ 0.22

(0.22) (0.21) (0.17)

N 6,328 6,328 7,266
Note: Models include regional fixed effects. The SAR model excludes isolates.
∗ p-value < 0.1; ∗∗ p-value < 0.05; ∗∗∗ p-value < 0.0112



Table 8: Average Direct, Indirect and Total Effects of Covariates on Defense Burden

Variables W Specification Avg. Effects SAR SLX
M2 M3 M4 M5 M6

Civil Wart−1 Contiguity
Direct -0.46 -0.39
Indirect -0.17 -0.36
Total -0.62 -0.74

Civil Wart−1

Region (Europe) Indirect -4.63
Region (Middle East) Indirect -6.32
Region (Africa) Indirect 2.04
Region (Asia) Indirect -1.37
Region (Americas) Indirect -1.54

Interstate Wart−1

Contiguity
Direct 0.46
Indirect 0.17
Total 0.63

Contiguity + Alliance
Direct 0.37
Indirect 0.51
Total 0.88

Contiguity (W) Indirect 0.51

Contiguity (W2)
Direct 0.05
Indirect 0.19
Total 0.24

Contiguity (W3)
Direct 0.01
Indirect 0.11
Total 0.12

Contiguity (
∑3

n=1W
n)

Direct 0.30
Indirect 0.80
Total 1.10

Interstate Wart−1

Region (Europe) Indirect -1.43
Region (Middle East) Indirect 2.16
Region (Africa) Indirect 0.21
Region (Asia) Indirect -0.84
Region (Americas) Indirect 0.44

Defense Burdent−1

Contiguity
Direct -0.12
Indirect -0.04
Total -0.16

Contiguity + Defense
Direct -0.14
Indirect 0.05
Total -0.09

Note: SAR Model 1 uses a binary, un-row-standardized contiguity weights matrix.
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change is estimated to increase contiguous neighbors’ defense burdens by 0.02%. The latter
estimation technique is more flexible and provides more realistic inferences.

Another advantage in the flexibility of the SLX is the ability to properly model conditional
patterns of spatial dependence. In the first SLX model (Model 2 in Table 7), we demonstrated
that the spatial effects of defense burdent−1 were conditioned by patterns of neighbors via
contiguity and defense pact. To explore this further, let us examine how the flexibility of
SLX models allows us to easily estimate region-specific SLX variables.8 Due to security
agreements, colonial histories, regional organizations, and other characteristics (see ?, 429–
430 for a summary), covariates that might spillover in one region are contained in another. In
Models 4 and 5 (Table 9) we estimate separate region-specific parameters for both variables
(civil wart−1 and interstate wart−1). By doing so, we can show how the effects of wars depend
on the regions in which they occur.

The results in Table 9 (and the effects depicted in Table 2) demonstrate that the non-
conditional SLX model (Model 3) clouded a great deal of region-specific heterogeneity in the
spatial patterns. The resulting average indirect effect of civil wart−1 in Model 3 was slightly
negative (-0.36). This value represents a rough average of the indirect effects across regions,
and obscures the fact that in one of the regions (Africa) civil wars in one’s region actually
increases states’ defense burdens. This is also the case in interstate wart−1, as both Europe
and Asia/Oceania respond in the opposite manner as the other regions to interstate wars in
the region. These inferences—while relatively easy to derive in the SLX setting—would be
prohibitively difficult, if not impossible, with an SAR model.

One set of circumstances where the SAR model is generally more appropriate than the
SLX is in the case of higher-order effects beyond the first-order. If these effects are expected
to occur simultaneously, then it is generally correct to estimate an SAR. If, however, the
higher-order effects are based on spatial clustering in the observables, then the SLX can
be modified to estimate higher-order effects. In Model 6 (Table 9) we add two higher-order
effects to represent the possibility that changes in defense burdens by second- and third-order
contiguous neighbors might have an effect on the focal state. Adding the two higher-order
effects SLX variables has the benefit of allowing for feedback effects (as shown in the direct
effects for second- and third-order contiguity in Table 2), but has the downside of increasing
multicollinearity (both higher-order effects have variance inflation factors above 11). In this
case, all three SLX variables are positive, and it is clear that the positive effects decline
considerably at each additional order of contiguity. F-tests suggest that we cannot reject
the null hypothesis that the two higher-order coefficients are jointly equal to 0, which means
that the specification with first-order contiguity is sufficient.

While the F-tests suggest that the specification with the first-order contiguity is suffi-
cient,9 it is instructive to graphically explore how the W (i.e., the distribution of contiguous
neighbors in this model) influences the size of the indirect effects. In Figure 1 we depict the
average total effects of interstate wart−1 for all European countries in 2007 (except for Russia

8For this example, we use the Correlates of War’s regional classification (see Stinnett et al. 2002 for a
description).

9F-tests suggest that we cannot reject the null hypothesis that the two higher-order coefficients are jointly
equal to 0.
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Table 9: Conditional SLX Models of Neighborhood Effects on Defense Burdens

Model 4 Model 5 Model 6

Spatial Estimates (θ)
Contiguity×Interstate Wart−1 0.16

(0.12)
Contiguity2×Interstate Wart−1 0.02

(0.05)
Contiguity3×Interstate Wart−1 0.002

(0.01)
Region×Civil Wart−1 -0.16 -0.008

(0.10) (0.03)
Region (Middle East)×Civil Wart−1 -0.06

(0.13)
Region (Africa)×Civil Wart−1 0.23∗∗

(0.11)
Region (Asia)×Civil Wart−1 0.11

(0.12)
Region (Americas)×Civil Wart−1 0.21∗

(0.12)
Region×Interstate Wart−1 -0.001 -0.05

(0.02) (0.05)
Region (Middle East)×Interstate Wart−1 0.12∗

(0.07)
Region (Africa)×Interstate Wart−1 0.06

(0.05)
Region (Asia)×Interstate Wart−1 0.02

(0.06)
Region (Americas)×Interstate Wart−1 0.06

(0.10)

Non-Spatial Estimates (β)
Civil Wart−1 -0.41∗∗∗ -0.39∗∗∗ -0.42∗∗∗

(0.15) (0.15) (0.15)
Interstate Wart−1 0.44∗∗∗ 0.44∗∗∗ 0.24

(0.15) (0.15) (0.21)
Total Population (Logged)t−1 0.04∗∗ 0.04∗∗ 0.03∗

(0.02) (0.02) 0.02)
Annual Trend -0.003∗ -0.004∗∗ -0.004∗∗∗

(0.002) (0.002) 0.002)
1992 -1.00∗∗∗ -1.04∗∗∗ -1.05∗∗∗

(0.20) (0.20) (0.20)
Defense Burdent−1 -0.12∗∗∗ -0.12∗∗∗ -0.12∗∗∗

(0.006) (0.006) (0.006)
∆Defense Burdent−1 -0.15∗∗∗ -0.15∗∗∗ -0.15∗∗∗

(0.01) (0.01) (0.01)
Constant 0.22 0.24 0.23

(0.17) (0.17) (0.17)

N 7,266 7,266 7,266
Note: Models include regional fixed effects.
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Figure 1: Total Effects of Interstate Wart−1 across European States in 2007 (Model 6)

(1.253935,2.389645]
(.8194097,1.253935]
(.4786897,.8194097]
[0,.4786897]

Note: The values represent the total effects—including direct and indirect effects—for each European state
(i.e., the total in each row of the partial derivatives matrix), given an interstate war in every European state
in 2007. Russia, which is omitted for graphical purposes, has the largest total effects of any European state
(2.74).
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for illustration purposes). There is a great deal of variation in the size of the effects, and
that variation is largely consistent with the historical record detailing countries’ responses
to interstate wars. For example, the countries that have the largest total indirect effects
are also those with the most contiguous neighbors (Russia, Germany, Poland, Ukraine, and
Austria).10 On the other hand, countries like Malta, Cyprus, United Kingdom and Ireland
have the smallest total effects.

10This is a function of our choice to not row-standardize the weights matrix.
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